# A unified formalism for complex systems architecture

#### Boris Golden

#### Defence for a PhD in Computer Science

May the 13<sup>th</sup>, 2013



#### Introduction

Dataflows Systems Integration operators Architecture of systems

# Our aim



We want to define a **formal framework to model & reason on such "complex industrial" systems** characterized by:

- heterogeneous components (esp. both discrete & continuous)
- a huge quantity of which are integrated at multiple scales.

### Towards a unified formalism

- Dedicated, well-formalized tools exist to design specific types of systems (physical, software, organizational)
- And the underlying approaches to model & design those various systems have strong similarities at a certain level of abstraction
- In Systems engineering (i.e. the discipline to design complex industrial systems with heterogeneous parts), architectural models & methods deal with the "big picture", but lack a formal semantics unifying all existing vertical formalisms
- → We propose a unified formalism for these "complex" systems, by dealing with heterogeneity + multiscale!

Systems approach is the basis of all specific systems design



This intuitive graphical language allows to **describe all systems** with the same concepts: time, data, flow, box, state, behavior.

### How we model systems

• A functional machine processing dataflows



• with **step by step transitions** to change state & output at predefined moments of time characteristic of the system:



• Systems can then be integrated together as Lego blocks.

A unified formalism for complex systems architecture

### Summary of this presentation







Architecture of systems

Time Data Dataflows



- Time
- Data
- Dataflows
- 2 Systems
- Integration operators
- Architecture of systems

**Time** Data Dataflows

### Time reference

A time reference is a unified & generic modeling of time:

### Definition (Time reference)

A **time reference** is an infinite set T together with an internal law  $+^{T}$ :  $T \times T \rightarrow T$  and a pointed subset  $(T^{+}, 0^{T})$  satisfying the following conditions:

- upon  $T^+$ : closure, initiality, left neutrality
- upon *T*: associativity, right neutrality, left cancellation, linearity

#### Example

 $\mathbb{N}$ ,  $\mathbb{R}$ ,  $*\mathbb{R}$  (set of nonstandard real numbers containing infinitesimal, standard & infinite real numbers).

**Time** Data Dataflows

### Good news: time is linear!

Proposition (Total order on a time reference)

We can define a **total order**  $\leq^{T}$  on T as follows:

$$a \preceq^T b \Leftrightarrow \exists c \in T^+, \ b = a + T^c$$

Remark: this is a classical result.

**Time** Data Dataflows

### Time scales

Sets of moments of a time reference (later used to define systems, both discrete & continuous):

#### Definition (Time scale)

A time scale is any subset  $\mathbb{T}$  of a time reference  $\mathcal{T}$  such that:

- $\mathbb T$  has a minimum  $m^{\mathbb T}\in\mathbb T$  such that  $0\preceq m^{\mathbb T}$
- $\forall t \in T, \ \mathbb{T}_{t+} = \{t' \in \mathbb{T} | t' \succ t\}$  has a minimum  $\mathit{succ}^{\mathbb{T}}(t)$
- $\forall t \in T \mid t \succ m^{\mathbb{T}}$ , the set  $\mathbb{T}_{t-} = \{t' \in \mathbb{T} | t' \prec t\}$  has a maximum  $pred^{\mathbb{T}}(t)$
- the axiom of induction is verified on  $\mathbb{T}$ .

**Time** Data Dataflows

### Expressivity of time scales

#### Example

A time scale on the time reference  $\mathbb{R}^+$  can be any subset A such that:  $\forall t, t' \in \mathbb{R}^+$ ,  $|A \cap [t; t + t']|$  is finite.

#### Example

A regular time scale can be  ${}^*\mathbb{N}\tau$  where  $\tau \in {}^*\mathbb{R}^+$  is the step,  $0 \in {}^*\mathbb{N}\tau$  and  $\forall t \in {}^*\mathbb{N}\tau$ ,  $succ^{}*\mathbb{N}\tau(t) = t + \tau$ .

#### Property (unification of discrete & continuous time scales)

In the last example, we can thus define **both discrete and continuous time scales in a unified formalism**, depending on whether  $\tau$  is infinitesimal or finite!

**Time** Data Dataflows

Time scales are a good definition of time for systems!

Because time scales:

- **1** allow recursive definitions (for dataflow transformation)
- **2** unify discrete & continuous time (e.g. within  $*\mathbb{R}$ )
- **o** can be mixed together (for systems integration):

#### Proposition (Finite union of time scales)

A finite union of time scales is still a time scale.

Time Data Dataflows

### Datasets

We define the data that will be manipulated by systems. A dataset is an alphabet of symbols together with a "data behavior":

#### Definition (Dataset)

A **dataset** is a 2-tuple  $\mathcal{D} = (D, \mathcal{B})$  such that:

 $\bullet~D$  is a set containing a special blank  $\epsilon$ 

• 
$$\mathcal{B} = (r, w)$$
 where  $r: D \to D$  and  $w: D \times D \to D$  verify  
 $r(\epsilon) = \epsilon$  (R1)  
 $r(r(d)) = r(d)$  (R2)  
 $r(w(d, d')) = r(d')$  (R3)  
 $w(r(d'), d) = d$  (W1)  
 $w(w(d, d'), r(d')) = w(d, d')$  (W2)

Time Data Dataflows

### Data behaviors give a meaningful semantics to data

#### Example (Persistent data behavior)

In this case, data cannot be consumed by a reading, and every writing erases the previous data (e.g. what the screen of my phone displays):

$$r(d) = d$$
 and  $w(_{-}, d) = d$ 

#### Example (Consumable data behavior)

In this case, data is consumed by a reading, and every writing (excepted when it is  $\epsilon$ ) erases the previous data (e.g. my phone itself as an object):

$$r(d) = \epsilon$$
 and  $w(d, d') = \begin{cases} d & \text{if } d' = \epsilon \\ d' & \text{else} \end{cases}$ 

Time Data Dataflows

Datasets are a good definition of data for systems!

Because we want to handle the following properties of data:

- they carry information
- they can have **different modeling semantics** (e.g. persistent vs consumable) to handle heterogeneity of data
- we want to be able to give a **consistent synchronization** of data between different time scales

Time Data Dataflows

Dataflows are flows of data at moments of a time scale

#### Definition (Dataflow)

A **dataflow** over  $(\mathcal{D},\mathbb{T})$  is a mapping  $X : \mathbb{T} \to D$ . The set of all dataflows over  $(\mathcal{D},\mathbb{T})$  is noted  $\mathcal{D}^{\mathbb{T}}$ .

A dataflow can be observed from any time scale:

Definition (Projection of a dataflow on a time scale)

The **projection**  $X_{\mathbb{T}_P}$  of X on  $\mathbb{T}_P$  is the dataflow on  $(\mathcal{D}, \mathbb{T}_P)$  induced (following the data behaviors) by X on  $\mathbb{T}_P$ .

Equivalent dataflows cannot be discriminated by any projection:

Definition (Equivalence of dataflows as far as)

X and Y are **equivalent as far as**  $t_0 \in T$  (noted  $X \sim_{t_0} Y$ ) iif:  $\forall \mathbb{T} \in Ts(T), \ \forall t \in \mathbb{T} \mid t \leq t_0, \ X_{\mathbb{T}}(t) = Y_{\mathbb{T}}(t)$ 

Time Data Dataflows

### Consistency of dataflow projections

Proposition (Equivalence of projection on a finer time scale)

Let X be a dataflow on  $(\mathcal{D}, \mathbb{T}_X)$  and let  $\mathbb{T}_P$  be a time scale such that  $\mathbb{T}_X \subseteq \mathbb{T}_P$ . Then:

### $X \sim X_{\mathbb{T}_P}$



Proposition (Equivalence of projections on nested time scales)

Let X be a dataflow and let  $\mathbb{T} \subseteq \mathbb{T}_P$  be two nested time scales. Then, we have:

$$(X_{\mathbb{T}_P})_{\mathbb{T}} = X_{\mathbb{T}}$$

Time Data Dataflows

### Dataflows are a good definition of systemic flows!

Because they have the following properties:

- they capture the heterogeneity of time and data
- the dataflow equivalence ensures a **consistent definition of systems** by preventing modeling artefacts
- they will ensure a **consistent definition of systems integration** thanks to the ability to project dataflows between time scales

Definitions Expressivity





- Definitions
- Expressivity

Integration operators

Architecture of systems

Definitions Expressivity

### Representation of a system



Definitions Expressivity

### Definition of a system

#### Definition (System)

A system is a 7-tuple  $\int = (\mathbb{T}_s, \textit{Input}, \textit{Output}, S, q_0, \mathcal{F}, \mathcal{Q})$  where

- $\mathbb{T}_s$  is the time scale of the system
- *Input* = (*In*, *I*) and *Output* = (*Out*, *O*) are respectively input and output datasets
- S is the non-empty set of states
- q<sub>0</sub> is the initial state of the system
- $\mathcal{F}: In \times S \times \mathbb{T}_s \rightarrow Out$  is the functional behavior
- $\mathcal{Q}: In \times S \times \mathbb{T}_s \to S$  is the states behavior.
- $\bullet$  Behavior functions contain  $\mathbb{T}_{s}$  for integration consistency.
- Inputs can have an instantaneous influence on state & output.

Definitions Expressivity

### Step by step execution within time

#### Definition (Execution of a system)

Let  $X \in In^T$  be an input dataflow for  $\int$  and  $\tilde{X} = X_{\mathbb{T}_s}$ . The **execution of**  $\int$  **on the input dataflow** X is the 3-tuple (X, Q, Y) where

- Q ∈ S<sup>Ts</sup> is recursively defined by:
   Q(m<sup>Ts</sup>) = Q(X̃(m<sup>Ts</sup>), q<sub>0</sub>, m<sup>Ts</sup>)
  - $\forall t \in \mathbb{T}_s, \ Q(\mathit{succ}^{\mathbb{T}_s}(t)) = \mathcal{Q}(\tilde{X}(\mathit{succ}^{\mathbb{T}_s}(t)), Q(t), \mathit{succ}^{\mathbb{T}_s}(t))$
- $Y \in Out^{\mathbb{T}_s}$  is defined by:
  - $Y(m^{\mathbb{T}_s}) = \mathcal{F}\big(\tilde{X}(m^{\mathbb{T}_s}), q_0, m^{\mathbb{T}_s}\big)$
  - $\forall t \in \mathbb{T}_s, \ Y(\mathit{succ}^{\mathbb{T}_s}(t)) = \mathcal{F}(\tilde{X}(\mathit{succ}^{\mathbb{T}_s}(t)), Q(t), \mathit{succ}^{\mathbb{T}_s}(t))$

Remark: inputs are read only at the moments of its time scale. Subtility: the initial state of the system is computed using  $q_0$ .

Definitions Expressivity

Transfer functions are a semantics of systems execution

#### Definition (Transfer function)

A function  $F : Input^T \to Output^{\mathbb{T}_s}$  is a **transfer function** of time scale  $\mathbb{T}_s$  on signature (*Input*, *Output*) if, and only if it is causal:

$$\forall X, Y \in \mathit{Input}^{\mathsf{T}}, \ \forall t \in \mathsf{T}, \ \left(X_{\mathbb{T}_s} \sim_t Y_{\mathbb{T}_s}\right) \Rightarrow \left(\mathsf{F}(X) \sim_t \mathsf{F}(Y)\right)$$

#### Theorem (Transfer function of a system)

Let  $\int$  be a system. The couple of dataflows (X,Y) resulting from all possible executions of  $\int$  induce a **unique transfer function**  $F_{\int}$ .

Remark: In practice, transfer functions are extremely difficult to specify, since they are a function of dataflows themselves. But the correspondence between systems & transfer functions is key to prove the consistency of our work.

Definitions Expressivity

#### Example (Physical system)

Any Hamiltonian system can be modeled as a system in our framework. E.g. the water tank.

#### Example (Software system)

We define a Turing machine with inputs and outputs as a system.

#### Example (Human system)

We can model a human as a system, to define the meaningful states & behavior at high-level, so that they can be taken into account during the design (e.g. pilot: alive, asleep, dead).

#### Expressivity of our model

Our definition of a system can model key real systems types relevant in systems engineering: physical, software and human.

Composition operators Abstraction



### 2 Systems

- Integration operators
  - Composition operators
  - Abstraction



Composition operators Abstraction

### What is integration?

**Building multiscale systems from a set of elementary systems** by recursive application of composition and abstraction operators:

- Composition (divided in Product and Feedback) consists in aggregating systems together in an overall greater system where some inputs and outputs of the various systems have been interconnected.
- Abstraction allows to "zoom out" from a system to define a more abstract system that can itself be recursively integrated.

Composition operators Abstraction

Representation of the extension of a system



Composition operators Abstraction

### Extension to a finer time scale

The extension operator makes it possible to define a finite number of systems on a shared time scale.

Definition (Extension of a system)

Let  $\mathbb{T} \in Ts(T)$  be a time scale such that  $\mathbb{T}_s \subseteq \mathbb{T}$ . The **extension** of  $\int$  to  $\mathbb{T}$  is the new system

 $f = (\mathbb{T}, \textit{Input}, \textit{Output}, S imes \textit{In} imes \textit{Out}, (q_0, \epsilon, \epsilon), ilde{\mathcal{F}}_{\mathbb{T}}, ilde{\mathcal{Q}}_{\mathbb{T}})^{a}$ 

 ${}^{a}\!\tilde{\mathcal{F}}_{\mathbb{T}} \text{ and } \tilde{\mathcal{Q}}_{\mathbb{T}} \text{ are technical functions extending } \mathcal{F} \text{ and } \mathcal{Q} \text{ to finer time scales.}$ 

#### Theorem: Equivalence of a system by extension

Let  $\int$  be a system and  $\int'$  be its extension to a finer time scale. Then S and S' have **equivalent** transfer functions:  $F_f \sim F_{f'}$ .

Composition operators Abstraction

Representation of the product of 2 systems



Remark: the product on datasets naturally induces the definition of **multiple inputs and outputs**.

Boris Golden

A unified formalism for complex systems architecture

Composition operators Abstraction

### Product

#### Definition (Product of systems)

The **product**  $S_1 \otimes \cdots \otimes S_n$  is the system

•  $Input = Input_1 \otimes \cdots \otimes Input_n$  (and idem for Output)

• 
$$S = S_1 \times \cdots \times S_n$$
 and  $q_0 = (q_{01}, \ldots, q_{0n})$ 

• 
$$\mathcal{F}((x_1,...,x_n),(q_1,...,q_n),t) = (\mathcal{F}_1(x_1,q_1,t),...,\mathcal{F}_n(x_1,q_1,t))$$

• 
$$\mathcal{Q}((x_1,\ldots,x_n),(q_1,\ldots,q_n),t) =$$
  
 $(\mathcal{Q}_1(x_1,q_1,t),\ldots,\mathcal{Q}_n(x_1,q_1,t))$ 

#### Theorem: Consistency of the product of systems

The transfer function of the product is **equivalent** to the usual product of the transfer functions:  $F_{f_1 \otimes \cdots \otimes f_n} \sim F_{f_1} \otimes \cdots \otimes F_{f_n}$ 

Composition operators Abstraction

### Representation of a feedback



Composition operators Abstraction

## Feedback (constructive definition)

#### Definition (Feedback of a system)

When there is no instantaneous influence of dataset D from the input to the output, the **feedback of** D **in**  $\int$  is the system  $\int_{fb(D)} = (\mathbb{T}_s, (In, \mathcal{I}'), (Out, \mathcal{O}'), S, q_0, \mathcal{F}', \mathcal{Q}')$  where

- we note  $d_{x,q,t} = \mathcal{F}((\epsilon, x), q, t)_D$
- $\mathcal{I}'$  is the restriction of  $\mathcal I$  to In, and  $\mathcal O'$  of  $\mathcal O$  to Out

• 
$$\mathcal{F}'(x \in \mathit{In}, q \in S, t) = \mathcal{F}ig((\mathit{d}_{x,q,t}, x), q, tig)_{\mathit{Out}}$$

•  $\mathcal{Q}'(x \in \mathit{In}, q \in S, t) = \mathcal{Q}\bigl((\mathit{d}_{x,q,t}, x), q, t\bigr)$ 

#### Theorem: Consistency of the feedback on systems

The transfer function of the feedback of a system **equals** the usual feedback of the transfer function of this system:  $F_{f_{fb(D)}} = fb_{(F_f,D)}$ 

Composition operators Abstraction

### Sequential composition from product and feedback

Any **sequential composition of** *n* **systems** can be easily obtained from a finite sequence of product and feedback operators:



Composition operators Abstraction

### Modeling nondeterministic systems with an oracle

#### Example (Abstraction can bring nondeterminism to a model)

A glass with solidity  $s \in \{0, ..., 100\}$ , where *s* decrease at each impact *i* "becomes" nondeterministic (in reaction to *i*) when described as *broken* for s = 0 and *OK* for  $s \in \{1, ..., 100\}$ .



Composition operators Abstraction

### Representation of the abstraction operator



Remark: the abstraction is a **"zoom out"** of datasets (considering higher level datas for inputs, outputs and states, and eventually merging different dataflows), time (considering intervals of time instead of moments) and thus overall behavior.

Composition operators Abstraction

### Abstraction of a system

#### Definition (Abstraction of a system)

Let  $\int = (\mathbb{T}_s, Input, Output, S, q_0, \mathcal{F}, \mathcal{Q})$  be a system.  $\int' = (\mathbb{T}_a, Input_a \otimes \mathcal{E}, Output_a, S_a, q_a 0, \mathcal{F}_a, \mathcal{Q}_a)$  is an **abstraction** of  $\int$  for input and output abstractions  $(A_i, A_o)$  iif:

 $\exists A_q : S^{\mathbb{T}_s} \to S_a^{\mathbb{T}_a}, \text{ forall execution } (X, Q, Y) \text{ of } f, \exists E \in \mathcal{E}^{\mathbb{T}_a}, \\ (A_i(X_{\mathbb{T}_s}) \otimes E, A_q(Q), A_o(Y)) \text{ is an execution of } f'.$ 

Conversely,  $\int'$  is a concretization of the system  $\int$ .

#### Theorem: Consistency of the abstraction of a system

The transfer function of an abstraction of a system **equals** the corresponding abstraction of the transfer function of this system.

Composition operators Abstraction

These operators are good to model systems integration!

- They **encompass key integration operators**: composition & abstraction
- It ensures a consistent integration of heterogeneous systems
- It makes it possible to **recursively integrate systems** since our definition of systems is closed under those operators.

Handling underspecification Modeling recursive structure





Integration operators

Architecture of systems

- Handling underspecification
- Modeling recursive structure

Handling underspecification Modeling recursive structure

#### Definition (Systemic signature)

A systemic signature is a 4-tuple  $(X, Y, Q, \mathbb{T})$  where X, Y and Q are datasets (respectively called *input values*, *output values* and *states*) and  $\mathbb{T}$  is a time scale.

#### Definition (Requirement)

A **requirement** on  $(X, Y, Q, \mathbb{T})$ , is a logical formula (e.g. using temporal logics) expressing properties on the behavior of any system of systemic signature  $(X, Y, Q, \mathbb{T})$ . The set of all possible requirements on this systemic signature is noted  $Req(X, Y, Q, \mathbb{T})$ .

#### Example (Expected property on the behavior of a system)

The system can be expected to be "alive", meaning here that a non blank input read at instant t must instantly result in a non blank output or a modification of the internal state.

Handling underspecification Modeling recursive structure

### An underspecified system

#### Definition (Box)

A **box** is a 5-uplet  $(X, Y, Q, \mathbb{T}, r)$  where:

- $(X, Y, Q, \mathbb{T})$  is a systemic signature
- $r \in Req(X, Y, Q, \mathbb{T})$

We note  $BB(X, Y, Q, \mathbb{T})$  the set of boxes on  $(X, Y, Q, \mathbb{T})$ .



Handling underspecification Modeling recursive structure

A box induces a set of corresponding systems

#### Definition (Realization of a box)

Let  $B = (X, Y, Q, \mathbb{T}, r)$  be a box. A **realization** of B is any system S of systemic signature  $(X, Y, Q, \mathbb{T})$  such that  $S \vDash r$ . When such a system exists, B is said to be *realizable*.



Handling underspecification Modeling recursive structure

These are good definitions to handle underspecification!

We can now deal with underspecification:

- a systemic signature only specifies the systemic variables
- a box specifies the variables & behavior constraints
- a system is the algorithmic specification of a box.

Handling underspecification Modeling recursive structure

### Views define nested boxes in a consistent way

#### Definition (View)

A view is a pair  $(B, (B_0, ..., B_{n-1}, C))$ :

- B is a box
- $(B_0, \ldots, B_{n-1}, C)$  is a refinement of B.

A view can be realized by a *consistent* (n+1)-tuple of systems.



A unified formalism for complex systems architecture

Handling underspecification Modeling recursive structure

Multiscale systems are the realization of multiscale views

#### Definition (Multiscale system)

A multiscale system is a tree where:

- all leaves are labelled with a system
- internal nodes with an even depth are labelled with a pair (S, C), where S is a system and C is a composition plan
- internal nodes with an odd depth are labelled with a pair  $(S, \alpha)$ , where S is a system and  $\alpha$  is an abstraction function
- for each even node (S, C) of children  $(S_0, \_), \ldots, (S_{n-1}, \_)$ ; we have:  $S = C(S_0, \ldots, S_{n-1})$
- for each odd node  $(S, \alpha)$ , its unique child  $(S', _)$  is such that:  $S = \alpha(S')$ .

Handling underspecification Modeling recursive structure

### Multiscale systems = systems with an internal structure!



A unified formalism for complex systems architecture

### Synthesis of our architecture framework

- Heterogeneous dataflows
  - Time = time reference + time scale
  - Data = dataset + data behavior
  - **Dataflow** = time + data
- Systems
  - **System** = functional behavior + state behavior + time scale
  - Transfer function = causal transformation of dataflows
  - Execution of a system = transfer function
- Integration of systems
  - **Composition** = extension + product + feedback
  - Abstraction = change of systemic level + nondeterminism
  - Integration operators = composition + abstraction
- Architecture
  - **Box** = signature + requirement
  - **View** = box + structure
  - Multiscale system = system + structure

### Whole manuscript published in 4 articles

- Chapters 2, 3, 4: A minimalist and unified semantics for heterogeneous integrated systems in Applied Mathematics and Computation (Elsevier), 2012
- Chapter 5: An adequate logic for heterogeneous systems at the 18th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS 2013).
- Chapter 6: A minimalist formal framework for systems architecting at the 3rd International Workshop on Model Based Safety Assessment (IWMBSA'2013)
- Chapter 7: Infinite order Lorenz dominance for fair multiagent optimization at the International Conference Autonomous Agents and Multi-Agent Systems 2010.

### Some perspectives to continue this work

- Confronting this formalism to real industrial cases
- Correctness-by-construction (bottom-up preservation of properties)
- Formalizing the **link with synchronous languages** (e.g. Lustre, Simulink)
- Integrating events in our definition of system (e.g. Altarica).