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The purpose of this paper is to contribute to a unified formal framework for complex sys-
tems modeling. To this aim, we define a unified semantics for systems including integra-
tion operators. We consider complex systems as functional blackboxes (with internal
states), whose structure and behaviors can be constructed through a recursive integration
of heterogeneous components. We first introduce formal definitions of time (allowing to
deal uniformly with both continuous and discrete times) and data (allowing to handle het-
erogeneous data), and introduce a generic synchronization mechanism for dataflows. We
then define a system as a mathematical object characterized by coupled functional and
states behaviors. This definition is expressive enough to capture the functional behavior
of any real system with sequential transitions. We finally provide formal operators for inte-
grating systems and show that they are consistent with the classical definitions of those
operators on transfer functions which model real systems.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The concept of complex systems has led to various definitions in numerous disciplines (biology, physics, engineering,
mathematics, computer science, etc). One speaks for instance of dynamical, mechanical, Hamiltonian, hybrid, holonomic,
embedded, concurrent or distributed systems (cf. [2,4,21,24,28,32]). A minimalist fuzzy definition consistent with (almost)
all those of the literature is that a ‘system’ is ‘‘a set of interconnected parts forming an integrated whole’’, and the adjective
‘complex’ implies that a system has ‘‘properties that are not easily understandable from the properties of its parts’’. In the
mathematical formalization of ‘‘complex systems’’, there are today two major approaches: the first one is centered on under-
standing how very simple, but numerous, elementary components can lead to complex overall behaviors (e.g. cellular
automatas), the second one (that will also be ours) is centered on giving a precise semantics to the notion of system and
to the integration of systems to build greater overall systems.

When mathematically apprehended, the concept of system (in the sense of this second approach) is classically defined
with models coming from:

� control theory and physics, that deal with systems as partial functions (dynamical systems may also be rewritten in this
way), called transfer functions, of the form:
8t 2 T; yðtÞ ¼ Fðx; q; tÞ;
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where x; q and y are inputs, states and outputs dataflows, and where T stands for time (usually considered in these ap-
proaches as continuous (see [32,1,12]).

� theoretical computer sciences and software engineering, with systems that can be depicted by models equivalent to
timed Turing machines with input and output, evolving on discrete times generally considered as a universal predefined
sequence of steps (see for instance [19,5,16]).

However all these models do not easily allow to handle layered systems with multiple time scales. The introduction of a
more evolved notion of time within Turing-like models involves many difficulties, mainly the proper definition of sequential
transitions or the synchronization of different systems exchanging dataflows without synchronization of their time scales.
Dealing with evolved definitions of times will generally imply to introduce infinity and infinitesimal (for instance with
non-standard real numbers). There is therefore a great challenge (which we propose to address in this paper) on being able
to unify in a same formal framework mathematical methods dealing with the design of both continuous and discrete
systems.

The theory of hybrid systems was developed jointly in control theory (see [32,34]) and in computer science (see [2,3,22])
to address this challenge. A serious issue with this theory is however that the underlying formalism has some troubling prop-
erties such as the Zeno effect which corresponds to the fact that an hybrid system can change of state an infinite number of
times within a finite time (because of the convergence of series of durations) that one usually prefers to avoid in a robust
modeling approach. Moreover, it does not allow to consider various time scales of heterogeneous granularity (which will
be the central point of our approach). Other interesting and slightly different attempts in the same direction can also be
found in Rabinovitch and Trakhtenbrot (see [27,33]) who tried to reconstruct a finite automata theory on the basis of a real
time framework, or in [35].

In the literature about (complex) systems, the real object and its model are often confused and both called ‘‘system’’. We
will call a real system any object of the real world which transforms flows of data. We will call system the mathematical ob-
ject introduced to model real systems. In this paper, we are interested in modeling the functional behavior of real systems,
and their integration. Thus, we will model real systems as functional blackboxes (with an internal state), whose structure
and behaviors can be described by the recursive integration of heterogeneous smaller subsystems (thus considering complex
systems as heterogeneous integrated systems). We will thus focus on two aspects of the complexity of systems:

� the heterogeneity of systems (modeled following continuous or discrete time, and exchanging data of different types, -
informational, material or energetic).1

� the integration of systems, i.e. the mechanism to construct a system resulting from the composition of smaller systems,
whose behaviors may be described at a more concrete level (i.e. a finer grain).

We will assume that the observational behavior of any real system can be modeled by a functional machine processing data-
flows (for related work on dataflow networks, see [19,11,10]) in a way that can be encoded by timed transitions for changing
states and outputs in instantaneous reaction to the inputs (comparable with timed Mealy machines [25] with possibly infi-
nite states). We show that our formalization makes it possible to model the basic kinds of real systems (physical, software
and human/organizational), which is especially important in Systems Engineering [6,23,30].

This paper is the second of a series on ‘‘Modeling of Complex Systems’’. Indeed, we generalize the approach of the first
paper [7] (where a unified framework for continuous and discrete systems was defined by using non-standard infinitesimal
and finite time steps) by dealing with time, data, and synchronization axiomatically, and by introducing integration opera-
tors. The purpose of this second paper is to give a unified and minimalist semantics for heterogeneous integrated systems
and their integration. By ‘‘unified’’, we mean that we propose a unified model of real systems that can describe the functional
behavior of heterogeneous systems and that is closed under integration. By ‘‘minimalist’’ we mean that our formalization
intends to provide a small number of concepts and operators to model the behaviors and the integration of (complex) real
systems. We believe that our work allows to give a relevant formal semantics for concepts and models typically used in Sys-
tems Engineering, where semi-formal modeling is well-spread. The paper is organized as follows:

� in Section 2 and 3, we introduce unified definitions of time (both continuous and discrete) and data (with various behav-
iors) to handle heterogeneous components and encompass classical approaches. We also define a generic synchronization
for dataflows,
� in Section 4, we introduce a formal definition of systems as unified functional objects modeling heterogeneous real

systems,
� in Section 5, we introduce minimalist operators for integrating systems (with closure of the definition of system) and

prove that they are consistent with classical concepts of integration formalized on transfer functions.
1 Data encompasses here all kinds of elements that can be exchanged between real objects. We distinguish three kinds of homogeneous systems: hardware/
physical systems (transforming continuous physical parameters), software systems (transforming and managing discrete data), and human/organizational
systems (organized through processes).
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2. Time

Most of the challenges raised by the unified definition of heterogeneous integrated systems are coming from time. Indeed,
real systems are naturally modeled according to various time scales (modeling discrete or continuous time), and we must
therefore be able to define:

� a unified model of time encompassing continuous and discrete times to later introduce a unified definition of heteroge-
neous systems,
� the mixture of various time scales for integrating systems.

Unifying both discrete and continuous times can seem paradoxal (see [9] for an exhaustive survey on the subject). To
reach this purpose, we propose to extend the approach developped in the first paper of the series [7] where discrete and
continuous times have been unified homogeneously (by using techniques of non-standard analysis [26,29,15]). We propose
a more generic approach and deal with time axiomatically, that is by expressing the minimal properties that both time ref-
erences and time scales have to satisfy. That allows to consider in a same uniform framework many different times: usual
ones such as N and R, or more specific ones such as the non-standard real numbers �R, Harthong-Reeb’s line [17,18], or the
VHDL time (see below).

2.1. Time references

A time reference is a universal time in which all systems will be defined.

Definition 2.1 (Time reference). A time reference is an infinite set T together with an internal law þT : T � T ! T and a
pointed subset ðTþ;0TÞ satisfying the following conditions:

� upon Tþ:
– 8a; b 2 Tþ; aþT b 2 Tþ closure (D1)
– 8a; b 2 Tþ; aþT b ¼ 0T ) a ¼ 0T ^ b ¼ 0T initiality (D2)
– 8a 2 Tþ;0TþT a ¼ a neutral to left (D3)

� upon T:
– 8a; b; c 2 T; aþTðbþT cÞ ¼ ðaþT bÞþT c associativity (D4)
– 8a 2 T; aþT 0T ¼ a neutral to right (D5)
– 8a; b; c 2 T; aþT b ¼ aþT c) b ¼ c cancelable to left (D6)
– 8a; b 2 T; 9c 2 Tþ; ðaþT c ¼ bÞ _ ðbþT c ¼ aÞ linearity (D7)

Elements of T are moments whilst elements of Tþ are durations (or distances between moments). Any duration can be con-
sidered as a moment, by considering a conventional origin.

Example 1. In the previous paper of this series [7], we chose for time reference the set of non-standard real numbers �R
defined as the quotient of real numbers R under the equivalence relation � # RN � RN defined by:
Please
integr
ðanÞnP0 � ðbnÞnP0 () mðfn 2 Njan ¼ bngÞ ¼ 1;
where m is an additive measure that separates between each subset of N and its complement, one and only one of these two
sets being always of measure 1, and such that finite subsets are always of measure 0. The obvious zero element of �R is
ð0ÞnP0;

�Rþ is its positive part taken here as durations, and the internal law + is defined as the usual addition on RN, i.e.:
ðanÞnP0 þ ðbnÞnP0 ¼ ðan þ bnÞnP0:
�R satisfies all the conditions of Definition 2.1 and is a well-defined time reference. Observe also that �R has as subset, the set
of non-standard integers �Z (and subsequently �N) where infinite numbers are all numbers having absolute value greater
that any n 2 N.

The properties given upon T and Tþ are constraints that catch the intuitive view that the time elapses linearly by adding
successively durations between them.

Proposition 1 (Total order on a time reference). We can define a total order �T (later written � for convenience) on T as follows:
a�T b() 9c 2 Tþ; b ¼ aþT c:
cite this article in press as: B. Golden et al., Modeling of complex systems II: A minimalist and unified semantics for heterogeneous
ated systems, Appl. Math. Comput. (2012), doi:10.1016/j.amc.2012.01.048
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Proof 1. This is a classical result (in semigroups theory, cf [13]) using D2;D4;D5;D6 and D7. h

Moreover, we can remark that D1 insures that any element of T greater than an element of Tþ will be in Tþ, and D3 insures
that 0T is the minimum of Tþ, so that the set of durations has natural properties according to �T and can be understood as
‘‘positive’’ elements of T.

Some authors, e.g. [20], add commutativity and Archimedean properties in the definition of a time reference. Commuta-
tivity is intuitive and the Archimedean property excludes Zeno’s paradox. However, they are not satisfied by the VHDL time
used in some programming languages.

Example 2. The VHDL time [8] V is given by a couple of natural numbers (both sets of moments and durations are similar):
the first number denotes the ‘‘real’’ time, the second number denotes the step number in the sequence of computations that
must be performed at the same time – but still in a causal order. Such steps are called ‘‘d-steps’’ in VHDL (and ‘‘micro-steps’’
in StateCharts). The idea is that when simulating a circuit, all independent processes must be simulated sequentially by the
simulator. However, the real time (the time of the hardware) must not take these steps into account. Thus, two events e1; e2

at moments ða;1Þ; ða;2Þ respectively will be performed sequentially (e1 before e2) but at a same real time a. The VHDL
addition is defined by the following rules:
2 Thi
3 For
4 It c
5 The

Please
integr
ðr0 – 0Þ ) ðr;dÞ þ ðr0; d0Þ ¼ ðr þ r0;d0Þ;

ðr0 ¼ 0Þ ) ðr;dÞ þ ðr0; d0Þ ¼ ðr;dþ d0Þ;
where r; r0; d and d0 are natural numbers and + denotes the usual addition on natural numbers. Clearly, the internal law +
above is not commutative, nor Archimedean: we may infinitely follow a d-branch by successively adding d-times.2
2.2. Time scales

Time references give the basic expected properties of the set of all moments. Now, we want to define time scales, i.e. sets
of moments of a time reference that will be used to define a system.

Definition 2.2 (Time scale). A time scale is any subset T of a time reference T such that:

� T has a minimum mT 2 T

� 8t 2 T; Ttþ ¼ ft0 2 T j t � t0g has a minimum called succTðtÞ
� 8t 2 T , when mT � t, the set Tt� ¼ ft0 2 T j t0 � tg has a maximum called predTðtÞ
� the principle of induction3 is true on T.

The set of all time scales on T is noted TsðTÞ.
A time scale is defined so that it will be possible to make recursive constructions on it, and to locate any moment of the

time reference between two moments of a time scale. A time scale necessarily has an infinite number of moments. In fact, a
time scale is expected to comply with the Peano axioms,4 excepted that the succT and precT are defined for moments of T and
not only T.5 This is not equivalent: a simple counter-example on time reference Rþ can show it is possible to have prec and succ
properly defined for moments of the subset T ¼ f1� 1

2n for n 2 Ng [ f1þ 1
2n for n 2 Ng whereas moment 1 has no prec or succ

in T . This fundamental property prevents Zeno’s effect on any time scale. Most of time scales (discrete and continuous) used
when modeling real systems can be defined as unified regular time scales of step s and of minimum m:
Example 3. By using results of non-standard analysis, continuous time scales can then be considered in a discrete way.
Following the approach developed in [7] to model continuous time by non-standard real numbers, a regular time scale can
be �Ns where s 2 �Rþ is the step, 02�Ns and 8t2�Ns; succ�NsðtÞ ¼ t þ s. This provides a discrete time scale for modeling
classical discrete time (when the step is not infinitesimal) and continuous time (when the step is infinitesimal).
s is not the intended use of VHDL time, however: VHDL computations should perform a finite number of d-steps.
A 	 T; mT 2 A & 8t 2 A; succTðtÞ 2 A

� �
) A ¼ T.

an be easily checked that the above conditions imply Peano axioms.
se specific properties are necessary to prove that time scales are closed under finite union.

cite this article in press as: B. Golden et al., Modeling of complex systems II: A minimalist and unified semantics for heterogeneous
ated systems, Appl. Math. Comput. (2012), doi:10.1016/j.amc.2012.01.048
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Example 4. In the VHDL time V, the internal law induces a lexicographic ordering on N�N. Thus, let W 	 V such that:
8a 2 N; 9Na 2 N; 8ða; bÞ 2 W; b 6 Na (i.e. there are only a finite number of steps at each moment of time in W). Then W
is a time scale in the VHDL time.
Example 5. A time scale on the time reference Rþ can be any subset A such that: 8t; t0 2 Rþ; jA \ ½t; t þ t0
j is finite.
One might also use the new language for representing finite, infinite and infinitesimal numbers introduced in [31] to deal

with time.
We have shown that we can accomodate heterogeneous times with our definitions. We introduce a fundamental prop-

osition allowing to unify different time scales, which is necessary for systems integration (when the systems involved do not
share the same time scales). Overall, our definition of time will be suitable for heterogeneous integrated systems.

Proposition 2 (Union of time scales). A finite union of time scales (on the same time reference T) is still a time scale.
Proof 2. The proof for two time scales is enough. Let T1;T2 be two time scales on T. Let T ¼ T1 [ T2. We want to prove that T

is a time scale. T is a subset of T. Note that T has a minimum minðmT1 ;mT2 Þ, and that the succ and prec functions can be obvi-
ously defined by: 8t 2 T; succTðtÞ ¼ min succT1 ðtÞ; succT2 ðtÞð Þ and when t � mT; precT ¼ max precT1 ðtÞ; precT2 ðtÞð Þ.6 So the only
problem is to prove that the induction principle hold on T. This can be proved by using a lemma: if mT 2 A & 8t 2 A; succTðtÞ 2 A
then 8t 2 Ti; succTi ðtÞ 2 Ti for i ¼ 1;2 (this lemma is easily proved using the principle of induction in Ti on intervals of succes-
sive elements of Ti in T). So that finally, T ¼ T1 [ T2 satisfies the principle of induction. Thus, T is a time scale on T. h
3. Data

Another challenge to address to model complex systems is the heterogeneity of data (modeling any element that can be
exchanged between real systems) and of their synchronization between different time scales. We introduce datasets that
will be used for defining data transmitted by dataflows. The dataflows will be used to describe variables of systems (inputs,
outputs and states), and we define the synchronization of dataflows between time scales.

3.1. Datasets
Definition 3.1 (�-alphabet). A set D is an �-alphabet if � 2 D. For any set B, we can define an �-alphabet by B ¼ B [ f�g.
The elements of an �-alphabet are called data and � is a universal blank symbol � accounting for the absence of data (as

the blank symbol in a Turing machine). An �-alphabet can have an infinite number of data. A system dataset (also called
dataset) is an �-alphabet with the description of the behavior of the data (when read or written in a ‘‘virtual’’ buffer):

Definition 3.2 (System dataset). A system dataset is a pair D ¼ ðD;BÞ such that:

� D is an �-alphabet
� B, called data behavior, is a pair ðr;wÞ with r : D! D and w : D� D! D such that7:
6 For
7 The
8 1-sl

synchro

Please
integr
� rð�Þ ¼ � ðR1Þ;
� r rðdÞð Þ ¼ rðdÞ ðR2Þ;
� r wðd; d0Þ

� �
¼ rðd0Þ ðR3Þ;

� w rðd0Þ;d
� �

¼ d ðW1Þ;
� w wðd;d0Þ; rðd0Þ

� �
¼ wðd;d0Þ ðW2Þ:
B will be useful to synchronize dataflows defined on different time scales (see Projection below). Data behaviors can be
understood as the functions allowing to read and write data in a ‘‘virtual’’ 1-slot8 buffer defining how this synchronization
occurs at each moment of time:

� when a buffer is read, what is left (depending on the nature of data, it can partially vanish)
� when a new data is written (second parameter of w), knowing the current content of the buffer (first parameter of w),

what is the new content of the buffer (depending on the nature of data and the new incoming data, it can be partially
or totally modified).
convenience of writing, we assume that if precTi is not well defined for its argument, its value is mT .
se axioms give a relevant semantics and are necessary to define consistent projections of dataflows on time scales.
ot means that the buffer can contain only one data. This data will be used to compute the value of a dataflow at any moment of a time scale, to be able to
nize a dataflow with any possible time scale.

cite this article in press as: B. Golden et al., Modeling of complex systems II: A minimalist and unified semantics for heterogeneous
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In this context, the conditions on r and w can be understood as follows:

� (R1): reading an empty buffer (i.e. containing �) results in an empty buffer
� (R2): reading the buffer once or many times results in the same content of the buffer
� (R3): reading a buffer in which a data has just been written results in the same content whatever the initial content of the

buffer was before writing the data
� (W1): when the buffer has just been read, the new data erases the previous one
� (W2): when the buffer has just been written with a data, it will not be modified if it is again written with the result of the

reading function on this same data9

� we also have by (R1) + (W1): wð�; dÞ ¼ d (W3). When an empty buffer is written with a new data, the buffer contains this
new data.

There are two classical examples of data behaviors when modeling real systems:

Example 6 (Persistent data behavior). In this case, data cannot be consumed by a reading, and every writing erases the
previous data (this data behavior was the only one used in [7]):
9 Thi
10 Mo

synchro
11 We

Please
integr
rðdÞ ¼ d and wðd;d0Þ ¼ d0:
Example 7 (Consumable data behavior). In this case, data is consumed by a reading, and every writing (excepted when it is �)
erases the previous data:
rðdÞ ¼ � and wðd; d0Þ ¼ d if d0 ¼ �;
d0 else;

(

We give a less classical example of data behavior that can be used to represent the ability to accumulate data received
(what can be meaningful when data are written more frequently than read). It is important to notice that the buffer is still
a 1-slot buffer and that all accumulated data will be consumed entirely by a single reading.10
Example 8 (Accumulative data behavior). Let A be a non-empty set and D ¼ PðAÞ be the set of subsets of A. We consider that
� ¼ ;, so that D is an �-alphabet.11 In this case, data is consumed by a reading, and every writing is added (using internal law of
D, here [) to the previous data:
rðdÞ ¼ � and wðd;d0Þ ¼ d [ d0:
The same real data can be modeled using different behaviors: for instance, an electric current might be measured by a
number of electrons at each step of a time scale (consumable behavior, data expressed as a natural number), or by a contin-
uous flow of electrons (persistent behavior, data expressed as a real number in amperes). Thus, a data behavior is not an
intrinsic property of the real data it models, but a modeling choice.
3.2. Dataflows

In what follows, D will stand for a dataset of �-alphabet D with behaviors ðrD;wDÞ. A dataflow is a flow defined at the mo-
ments of a time scale carrying data of a dataset. It will be used to define the evolution of states, inputs and outputs of a system.

Definition 3.3 (Dataflow). A dataflow over (D;T) is a mapping X : T! D.
Definition 3.4 (Sets of dataflows). The set of all dataflows over (D;T) is noted DT. The set of all dataflows over D with any
possible time scale on time reference T is noted DT ¼

S
T2TsðTÞDT.

The projection of a dataflow on a time scale makes it possible to synchronize data exchanges between two different time
scales, with the rule that a data arriving at t will be read at the first next moment on the time scale of projection (the com-
putation of this synchronization only requires a 1-slot virtual buffer and data behaviors). It will be essential when composing
together systems using different time scales to define the properties of the exchange of data.
s rule will insure that a dataflow projected on a finer time scale is equivalent to the initial dataflow.
deling another kind of reading shall be modeled by buffers in the system itself, this is not the purpose of these ‘‘virtual’’ buffers dedicated to
nization of data between different time scales.
can extend this example to any unital magma of identity element e.

cite this article in press as: B. Golden et al., Modeling of complex systems II: A minimalist and unified semantics for heterogeneous
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Definition 3.5 (Projection of a dataflow on a time scale). Let X be a dataflow on (D;TX) and TP be a time scale. Let T ¼ TX [ TP .
Let T0P ¼ succTðTPÞ.12 We define recursively the buffer function b : T! D by13:

� (P1) if t 2 TX n T0P; bðtÞ ¼ w bðprecTðtÞÞ;XðtÞð Þ
� (P2) if t 2 T0P n TX ; bðtÞ ¼ rðbðprecTðtÞÞÞ
� (P3) if t 2 TX \ T0P ; bðtÞ ¼ XðtÞ
� (P4) if t 2 TP n ðTX [ T0PÞ; bðtÞ ¼ bðprecTðtÞÞ

The projection XTP
of X on TP is then the dataflow on (D;TP) defined by setting XTP

ðtÞ ¼ bðtÞ for every t 2 TP .
Note: (P1) occurs when a new data is received, and when the data on the buffer has not been read at the previous step so

does not need to be processed with the reading function. (P2) occurs when no new data is received, and when the data on the
buffer has been read at the previous step and so needs to be processed in the buffer with the reading function. (P3) occurs
when a new data is received, and when the data on the buffer has been read at the previous step, so that the content of the
buffer is the new data, by condition (W1). Finally, (P4) occurs when no new data is received, and when the data on the buffer
has not yet been read, so that nothing changes.

We define equivalent dataflows as dataflows that cannot be distinguished by any projection.

Definition 3.6 (Equivalent dataflows). The dataflows X and Y are equivalent (noted X � Y) if, and only if:
12 Cor
13 By
14 We
15 Thi
16 tx is

Please
integr
for any time scale T on T; XT ¼ YT:
Definition 3.7 (Equivalent dataflows as far as). The dataflows X and Y are equivalent as far as t0 2 T (noted X�t0 Y) if, and
only if:
for any time scale T on T; for all t � t0 in T; XTðtÞ ¼ YTðtÞ:

We now introduce two propositions insuring the relevancy of the projection of dataflows.
Proposition 3 (Equivalence of the projection on a finer time scale). Let X be a dataflow on (D;TX) and let TP be a time scale such
that TX # TP. Then, we have:
X � XTP
:

Proof 3. The proof uses the properties of the data behaviors and the principle of induction on time scales to show that:
8T 2 TsðTÞ; XT ¼ ðXTP

ÞT, and thus X � XTP (by definition of �). Let T be a time scale. We note P ¼ XTP
and want to prove that

XT ¼ PT.

Let bX be the buffer (defined for moments of TX [ T) used for defining the projection of X on T and bP be the buffer
(defined for moments of TP [ T) used for defining the projection of P on T. We will prove by induction on T that:
8t 2 T; bXðtÞ ¼ bPðtÞ.(a) First, we want to prove that the equality is true for moments before mTX . Let t0 2 T with t0 � mTX

(we will suppose without loss of generality14 that mT � mTX ).

� XTðmTÞ ¼ � by (P0) + (P4) to initialize the buffer.
� for P:

– if mT � mTP , then PTðmTÞ ¼ � by (P0) and (P4)
– else: we have 8t 2 TP j t � mTX ; PðtÞ ¼ XTP

ðtÞ ¼ � by (P0) and (P4) since mT � mTX . As wð�; �Þ ¼ � by (W3) and rð�Þ ¼ �
by (R1), the buffer till mT in the projection of P on T is alway equal to � and we have PTðmTÞ ¼ �.

� finally, XTðmTÞ ¼ PTðmTÞ.
� we can extend the proof by induction to any t0 2 T with t0 � mTX since 8t 2 TP such that t � mTX ; PðtÞ ¼ �.

(b) For the case where t ¼ mTX , we have bXðtÞ ¼ bPðtÞ ¼ XðmTX Þ, which will allow to initiate the induction.
(c) Then, we want to prove that the induction hypothesis can be used on T. Let t0 2 T with t0  mTX such that

bXðt0Þ ¼ bPðt0Þ and t1 ¼ succTðt0Þ. We want to prove that bXðt1Þ ¼ bPðt1Þ. Let A ¼
t0; t1
 \ TP
15 and B ¼
t0; t1
 \ TX (we have

B # A since TX # TP). Let tx ¼ precTX succTX ðt0Þð Þ.16 Three cases are to be considered:

� (1.1) if B ¼ ; and A ¼ ;
responding to moments such that a data has been read at the previous moment and shall be marked as ‘‘read’’.
convention, b precTðmTÞ

� �
¼ �, which makes it simpler to define the rules of projection without making a special case when t ¼ mT .

may add if necessary a smaller initial moment to T.
s notation is intended to capture the elements of TP greater than t0 and less than or equal to t1.

the latest moment of TX before or at t0. It exists since t0  mTX .
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– for bXðt1Þ: by (P2) we have bXðt1Þ ¼ r bXðt0Þð Þ
– for bPðt1Þ: by (P2) we have bPðt1Þ ¼ r bPðt0Þð Þ ¼ r bXðt0Þð Þ
– and so bXðt1Þ ¼ bPðt1Þ.
� (1.2) if B ¼ ; and A – ;, two subscases shall be considered

– (1.2.1) if tx ¼ t0, then

⁄ for bXðt1Þ: by (P2) we have bXðt1Þ ¼ r bXðt0Þð Þ. According to the situation: by (P3) bXðt0Þ ¼ Xðt0Þ ¼ w �;Xðt0Þð Þ or by

(P1) bXðt0Þ ¼ w . . . ;Xðt0Þð Þ. Anyway, bXðt0Þ ¼ w . . . ;Xðt0Þð Þ, and by (R3) we have bXðt1Þ ¼ r Xðt0Þð Þ.
⁄ for bPðt1Þ : 8t 2 A; PðtÞ ¼ r Xðt0Þð Þ, using (P2) and (R2) in the definition of P as the projection of X on TP . So, by (P1)

we have bPðmAÞ ¼ PðmAÞ ¼ r Xðt0Þð Þ. As w rðd0Þ; d
� �

¼ d by (W1), we have applying (P1) for all t 2 A; bPðtÞ ¼ r Xðt0Þð Þ. If
t1 R A, we apply (P4) and get: bPðt1Þ ¼ r Xðt0Þð Þ, and the result is the same if t 2 A.

⁄ and so bXðt1Þ ¼ bPðt1Þ.

– (1.2.2) if tx � t0, then
⁄ for bXðt1Þ: by (P2) we have bXðt1Þ ¼ r bXðt0Þð Þ. But bXðt0Þ can be, by (P2) and (P4), expressed recursively as

bXðt0Þ ¼ r bXðtXÞð Þ. Whatever the situation, as in (1.2.1) we can write bXðtxÞ ¼ w . . . ;XðtxÞð Þ and so by (R3) we have
bXðt0Þ ¼ r bXðtXÞð Þ ¼ r XðtxÞð Þ.

⁄ for bPðt1Þ: the proof is exactly the same as in (1.2.1).
⁄ and so bXðt1Þ ¼ bPðt1Þ.

� (1.3) if B – ; then A – ;. We show as in (1.2) that bXðmBÞ ¼ bPðmBÞ, and we conclude recursively that bXðt1Þ ¼ bPðt1Þ using
(W2).

(d) Finally, by induction, we have 8t 2 T; bXðtÞ ¼ bPðtÞ (begining the induction at t ¼ mTX , the anterior t being handled by
the first case (a)).

Hence, XT ¼ PT ¼ ðXTP ÞT for any time scale T. Thus X � XTP (by definition of �) which proves our result. h
Proposition 4 (Equivalence of projections on nested time scales). Let X be a dataflow and let TA # TB be two nested time scales.
Then, we have:
17 The
18 Defi

Please
integr
ðXTB
ÞTA
¼ XTA

:

Proof 4. This technical proof is very similar to the previous one. h
4. Systems

We introduce the definition of a system as a timed Mealy machine, and show that it can be represented by a transfer
function.

4.1. Formal definition of a system

We define a system as a mathematical object (figuring a functional black box with an internal state17), characterized by
coupled functional and states behaviors (defining step by step transitions for changing state and output in instantaneous reac-
tion to the input received).

Definition 4.1 (System). A system is a 7-tuple
R
¼ ðTs; Input;Output; S; q0;F ;QÞ where

� Ts is a time scale called the time scale of the system,
� Input ¼ ðIn; IÞ and Output ¼ ðOut;OÞ are datasets, called input and output datasets,

� S is a non-empty �-alphabet,18 called the �-alphabet of states,
� q0 is an element of S, called initial state,
� F : In� S� Ts ! Out is a function called functional behavior,
� Q : In� S� Ts ! S is a function called states behavior.

ðInput;OutputÞ is called the signature of s .
properties of this internal state are decisive to study computability (but out of the scope of this paper).
ning S as an e-alphabet (therefore containing e) and not just as a set will make it possible to define a dataflow of states, what will later be convenient.
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Our definition of system can be understood as a timed Mealy machine, i.e. a Mealy machine [25] where we have intro-
duced time,19 and where the set of states is not supposed to be finite (what is a fundamental difference from the point of view of
computability).

Ts represents the moments of ‘‘life’’ of the system, i.e. the moments where state and output can change in the behavior of
the system, and where input is read (the system will necessarly read its input at each moment of its time scale, the virtual
buffer being only used to synchronize the received dataflow with the time scale of the system20). The state of a system is all
information ‘‘inside’’ the system, allowing to define its instantaneous behavior according to inputs and time.
F and Q compute respectively the output and the current state of a system, from its last defined state, its current input

(the input can therefore have an instantaneous influence on output and state) and the moment of time considered. Introduc-
ing time in the transition functions is necessary so that the system has information about time to make transitions only at
moments on its time scale. Defining the system just as a sequential behavior on its time scale (which is only one possible
time scale in the time reference) without knowledge of time would make it difficult to compose meaningfully this system
with another system having a sequential behavior on another time scale, so that the composition can still be expressed
as a system.21

The introduction of time defines, from the point of view of computability, a recursive hierarchy of systems following a
recursive hierarchy of time scales on a given time reference. We will develop this point in future work.

We then define the dynamic execution of a system allowing to transform (step by step) an input dataflow into an output
dataflow, while defining a state dataflow.

Definition 4.2 (Execution of a system). Let s be a system. Let X 2 InT be an input dataflow22 for s and ~X ¼ XTs
. The execution

of s on the input dataflow X is the 3-tuple ðX;Q ;YÞ where

� Q 2 STs is recursively defined by23:
– QðmT

s Þ ¼ Q ~XðmTs Þ; q0;m
Ts

� �
– 8t 2 Ts; Q succTs ðtÞð Þ ¼ Q ~XðsuccTs ðtÞÞ;QðtÞ; succTs ðtÞ

� �
24

� Y 2 OutTs is defined by:
– YðmTs Þ ¼ F ~XðmTs Þ; q0;m

Ts

� �
– 8t 2 Ts; Y succTs ðtÞð Þ ¼ F ~XðsuccTs ðtÞÞ;QðtÞ; succTs ðtÞ

� �
X;Q and Y are respectively input, state and output dataflows.

4.2. Transfer functions

Functional behaviors (between inputs and outputs) of systems are given by ‘‘causal’’ functions transforming dataflows, i.e.
functions whose behavior is deterministic and only depending on data received in the past (not in the future).

Definition 4.3 (Transfer function). Let Input and Output be two datasets and let Ts be a time scale. A function
F : InputT ! OutputTs is a (causal) transfer function on time scale Ts of signature ðInput;OutputÞ if, and only if:
19 The
synchro

20 Buf
21 Defi

scale of
states t

22 The
23 The

conside
24 Defi

input o

Please
integr
8X;Y 2 InputT ; 8t 2 T; XTs
�tYTs

ð Þ ) FðXÞ�tFðYÞð Þ:

A transfer function is a classical and ‘‘universal’’ representation (see [32,12]) of any functional behavior (i.e. an object that

receives and sends data within time). We will show that every system induces a transfer function, and later that integration
operators defined on systems corresponds to integration operators on transfer functions.

Equivalent transfer functions are transfer functions which cannot be distinguished.

Definition 4.4 (Equivalence of transfer functions). Let F1 and F2 be two transfer functions sharing the same signature. F1 and
F2 are equivalent (noted F1 � F2) if, and only if:
introduction of time is a fundamental difference as it makes it possible to use hybrid times (and corresponding heterogeneous systems) and to define
nizations between different systems.
fers of the system can be defined inside the system itself.
ning the product of 2 systems with different time scales as a system requires to define them on a shared time scale, what perturbates the initial time
each system and makes it impossible to define a step by step behavior of the resulting system without knowledge of time (or without introducing tricky
o ‘‘count’’ the number of moments).
system cannot restrict the possible dataflows on Input it will receive, what is a safer modeling principle.
e-alphabet of states S is associated with a persistent behavior, since the state of a system at any moment of the time reference can be obtained by

ring its last defined state.
ning the current state as the state after the state transition allows to model meaningful real states behaviors with an instantaneous influence of the

n the state.
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8X 2 InputT ; F1ðXÞ � F2ðXÞ:

A unique transfer function can be associated with any system. It describes the functional behavior of this system.
Theorem 1 (Transfer function of a system). Let s be a system. There exists a unique25transfer function Fs , called the transfer
function of s and such that: for all input dataflow X of s; Fs ðXÞ is the output dataflow in the execution of s .
Proof 5. Let Fs : InT ! OutTs be the function defined by setting for every X 2 InT ; Fs ðXÞ as the unique output dataflow
Y 2 OutTs corresponding to the input dataflow X in the execution of s . Let X;Y 2 InT be two input dataflows for the system
s . If X�t0 Y for some t0 2 T , then by definition we have XTs

ðtÞ ¼ YTs
ðtÞ for every t � t0 in Ts. The execution of a system for an

input dataflow only depends on the projection of this dataflow on the time scale of the system. By definition of the execution
of a system, the output of this system at t only depends on inputs received until t (included), and so Fs ðXÞ�t0 Fs ðYÞ. Thus, Fs is
a transfer function. h

A system can then be represented as in Fig. 1 (where the white squares on the left account for the ‘‘virtual’’ buffers pro-
jecting the input dataflow on the time scale Ts of the system).

4.3. Examples of systems

Example 9 (Nondeterministic systems). We have defined systems a deterministic objects. It will however be useful to
simulate nondeterministic behaviors within our model. Nondeterministic behaviors can be modeled in a system as follows:
one of the input E can be used as an oracle (or a dataflow of events), i.e. an input giving information to the system to make its
transitions (functional and states).

It can simulate classical nondeterminism of Mealy machines (where functional and states behaviors have their value in
nonempty subsets of the target datasets of their deterministic version) by indicating at each step which element to chose
within this subset (so that the nondeterministic behavior is simulated by a dataflow of events within a deterministic
system). This flow can also be understood as the formalization of the imperfection/underspecification of any deterministic
model.26 It is therefore possible to take into account this imperfection by considering that transitions can be influenced by
specific events carried by the oracle.

This kind of ‘‘events dataflow’’ typically corresponds to the events used in States diagrams in modeling languages like
SysML (where an event as ‘‘the water tank is full’’ will in fact correspond to expressing in a deterministic way a
nondeterministic event that cannot be computed from the current input or state of the system).

We now give examples of modeling of the three kinds of real systems (physical, software and human) in our framework.

Example 10 (Software system). A software system can be modeled as a Turing machine with input and output, whose
transitions are made following a time scale. In our model, the state of a system contains the memory of the Turing machine,
its logical state, and its RW-head’s position.

We consider a classical Turing machine with input and output. Let QTur be the finite, non-empty set of logical states of the
Turing machine, qTur0 be the initial logical state, R be the �-alphabet of internal tape symbols, In and Out be the sets of input
and output, and d : QTur � R� In! QTur � R� Out � f�1;0;1g the transition function (separated into 4 projections
d1; d2; d3; d4 respectively on QTur ;R;Out and f�1;0;1g).

We define the system s ¼ ðTs; Input;Output; S; q0;F ;QÞ simulating this Turing machine by:
que on time scale Ts , and up to equivalence on all time scales.
e that this imperfection/underspectification can be on purpose, to define a simpler system. This point will be further discussed when introducing
ction’’ in Section 5. In practice, the possibility to model deterministic behaviors of a real system is often restricted by the limited grain of description of
l system state observed.
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� Ts is any time scale isomorphic to N (on any time reference)
� Input ¼ ðIn; IÞ where I is a behavior on In
� Output ¼ ðOut;OÞ where O is a behavior on Out
� S ¼ RZ � QTur � Z27

� q0 ¼ ð�; qTur0;0Þ
� F x; ðtape; qTur; iÞ; tð Þ ¼ d3ðkÞ where k ¼ qTur; tape½i
; x 2 QTur � R� In
� Q x; ðtape; qTur; iÞ; tð Þ ¼ tape i d2ðkÞ½ 
; d1ðkÞ; iþ d4ðkÞð Þ28

This system will compute exactly the same outputs as the initial timed Turing machine with input and output. Thus, our
model contains Turing-like models of software systems.
Example 11 (Human system). A basic example of a human system may be an individual, John, in the context of its work. In
our modeling, John has two states (‘‘normal’’ or ‘‘tired’’). He can receive requests (by phone) from its colleagues (he must
answer them by ‘‘Yes’’ or ‘‘No’’) and can also receive energy (when eating for example, what makes him normal if he was
tired). Lastly, John can become tired after receiving too many requests from its colleagues. John is a very helpful guy always
ready to help people, but when he is tired, he only helps urgent requests.

In the scope of our story, John can be modeled as the following nondeterministic system29:

� we choose Ts ¼ N (each unit of time being a second)30

� Input ¼ ðIn; IÞ with In ¼ fUrgent request;Request; �g � fEnergy; �g � fToo many; �g and I being the consumable behavior
associated to In. Too many is an event to model nondeterministic behaviors of the system at this abstraction level
� Output ¼ ðOut;OÞ with Out ¼ fYes;No; �g and O being the consumable behavior
� S ¼ fTired;Normal; �g and q0 ¼ Normal

� F ðx1; x2; eÞ; q; tð Þ
Yes if x1 ¼ Request & q ¼ Normal or x1 ¼ Urgent request
No if x1 ¼ Request & q ¼ Tired
� else ði:e: x1 ¼ �Þ

8<
: .

� Q ðx1; x2; eÞ; q; tð Þ Tired if e ¼ Too many or q ¼ Tired & x2 – Energy
Normal else

�
.

Example 12 (Physical system). It has been proved that any Hamiltonian system can be modeled within the framework intro-
duced in [7]. As our definition of system generalizes the work of this first paper,31 we will recall a simplified example of a
Water Tank given in [7], which is a well-known example of the hybrid systems and control theory literature.

We work in the time reference �R of nonstandard real numbers. Let us fix first some regular continuous time scale T with
infinitesimal time step s. We consider a water tank where water arrives at a variable rate wiðtÞP 0 (with t 2 T) through one
single pipe. The water leaves through another (output) pipe at rate woðtÞ (with t 2 T) controlled by a valve whose position is
given by vðtÞ 2 ½0;1
 (with t 2 T), 0 and 1 modelling respectively here the fact that the valve is closed or open. The water tank
can be modeled as a system, taking on input the current values of the incoming water flow wiðtÞ and the position v(t) of the
valve and sending on its output the corresponding output water flow woðtÞ and water level lðtÞ according to the following
equations:
27 In R
28 Wh
29 The

cannot
30 The

assump
31 It is

scales i

Please
integr
woð0Þ ¼ C V0; woðt þ sÞ ¼ C vðtÞ for every t 2 T�;

lð0Þ ¼ L0; lðt þ sÞ ¼ lðtÞ þ ðwiðtÞ �woðtÞÞs for every t 2 T�:
The input and output spaces of the system are thus InT ¼ ½0;C
 � ½0;1
 and OutT ¼ ½0;C
 � ½L1; L2
. This illustrates the modeling
of a simple physical system in our framework. Modeling of more complex physical systems can be found in [7].
5. Integration operators

We propose three elementary operators allowing to model systems integration, i.e. to build greater systems from a set of
elementary systems by recursive application of composition operators and abstraction operator.
Z; � is the sequence ð�ÞZ .
ere tape i x½ 
 means replacing in the sequence tape the ith symbol with x.
nondeterminism allows to express in this high-level modeling the fact that John will become tired when having received ‘‘too many’’ requests (what

be expressed precisely at this abstraction level).
choice of the time scale will be especially important when composing this system with other systems having their own time scales. The hidden

tion here is that John cannot receive more than one phone request each second.
out of the scope of this paper to prove it, however the proof is not difficult as one can notice that non-standard time scales defined in [7] are still time

n our new model, and that transitions defined in [7] can be rewritten as transitions in our model.
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5.1. Systems composition

Composition consists in aggregating systems together in an overall greater system where some inputs and outputs of the
various systems have been interconnected. Composition requires to have a definition of the synchronization of dataflows
between the different time scales of the systems considered. We assume that the transmission of data between systems
is instantaneous.

We define two operators for systems composition: the product (allowing to define a new overall system from a set of sys-
tems, without interconnecting them) and the feedback (allowing to define a new system by interconnecting an input and an
output of the same system). Dividing composition into two steps allows to distinguish between the aggregation of systems,
and the interconnections within the new overall system, and makes it easier to prove theorems.

5.1.1. Extension
We first introduce a ‘‘technical’’ operator called extension that will facilitate the definition of the product by allowing to

define on a shared time scale a finite32 number of systems. The extension concentrates all technical difficulties (which are
resulting from the introduction of time) in defining the composition of systems.

Definition 5.1 (Extension of a transfer function). Let F be a transfer function of time scale Ts on signature ðInput;OutputÞ. The
extension of F to T (such that Ts # T) is the equivalent transfer function F0 of time scale T on signature ðInput;OutputÞ
defined by:
32 Sin
33 x0co
34 (e,e

Please
integr
8X 2 InputT ; F0ðXÞ ¼ FðXÞT:

The instantaneous behaviors transition functions of a system make it possible to extend the transition functions of a sys-

tem to any moment of time, by the introduction of virtual extension buffers for input and output in the state (so that the new
state is augmented with a data of input and a data of output, memorizing respectively the data to be received and emitted).
Definition 5.2 (Instantaneous behaviors transition functions). Let s ¼ ðTs; Input;Output; S; q0;F ;QÞ be a system. We note wi

the writing function for Input and ri; ro the reading functions for Input and Output. Writing x0 ¼ wiðbi; xÞ,33 we define the
instantaneous behaviors transition functions of a system:
~F : In� ðS� In� OutÞ � T ! Out;

ðx; ðq; bi; boÞ; tÞ#
F x0; q; tð Þ if t 2 Ts;

roðboÞ else

�

and
~Q : In� ðS� In� OutÞ � T ! Out;

x; ðq; bi; boÞ; tð Þ# Qðx0; q; tÞ; riðx0Þ;Fðx0; q; tÞð Þ if t 2 Ts;

q; x0; roðboÞð Þ else;

�

The new transition functions ~F and ~Q are defined for every moment of the time reference T and work with extended

states containing virtual extension buffers allowing to synchronize inputs and outputs with the time scale of the system.
These new transition functions can be restricted to any time scale T, noted ~FT and ~QT.

The extension of a system consists in defining it on a finer time scale (making it possible to define a finite number of sys-
tems on a shared time scale, i.e. the union of their time scales).

Definition 5.3 (Extension of a system). Let T be a time scale such that Ts # T. The extension of s to T is the new system:
sT ¼ T; Input;Output; S� In� Out34;ðq0; �; �Þ; ~FT; ~QT

� �
Theorem 2 (Equivalence of a system by extension). Let s be a system and sT be its extension to a finer time scale. Then s and sT
have equivalent transfer functions:
Fs � FsT :
Moreover, the state dataflows in their execution are equivalent when projected on the initial �-alphabet of states S.
ce it is not possible, in a generic time reference, to define a time scale from an infinite union of time scales.
rresponds to the data waiting on the input.
,e) is considered as the blank symbol e.
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Proof 6. Let X be an input dataflow for s and sT. s will work on the projected dataflow XTs
and sT will work on the projected

dataflow XT. But ~FT and ~QT are defined to simulate the following behavior during their execution: they project the dataflow
XT on the time scale Ts, then compute the transitions for the system s and finally project the output dataflow of time scale Ts

on the finer time scale T. Thus, sT will in fact compute FsT ðXÞ ¼ Fs ðXTÞTs

� �� �
T

, which by Propositions 4 is in fact Fs ðXTs ÞT. But
as Ts # T, by Proposition 3, Fs ðXTs ÞT � Fs ðXTs Þ, which leads us to the desired result since Fs ðXTs Þ ¼ Fs ðXÞ.

The proof for the equivalence of the state dataflows (projected on the initial �-alphabet of states S) is straightforward as S
is associated with a persistent behavior. h
5.1.2. Product
We now define the product of transfer functions and of systems, and show that they are mutually consistent. We first

define the associative product � of datasets.

Definition 5.4 (Product of datasets). Let D1 ¼ ðD1; ðr1;w1ÞÞ and D2 ¼ ðD2; ðr2;w2ÞÞ be two datasets. D1 �D2 ¼ ðD; ðr;wÞÞ is a
new dataset called product of D1 and D2 and defined by35

� D ¼ D1 � D2
36

� r ðd1; d2Þð Þ ¼ r1ðd1Þ; r2ðd2Þð Þ

� w ðd1; d2Þ; ðd01; d
0
2Þ

� �
¼ wðd1; d

0
1Þ;wðd2; d

0
2Þ

� �

The associative product of datasets allows to define an associative product of dataflows.

Definition 5.5 (Product of dataflows). Let X be a dataflow on (DX ;TX) and Y be a dataflow on (DY ;TY ). The product X � Y of X
and Y is the dataflow on (DX �DY ;TX [ TY ) defined by:
35 It is
36 ð�; �
37 Defi

Please
integr
8t 2 TX [ TY ; X � YðtÞ ¼ XTX[TY
ðtÞ;YTX[TY

ðtÞð Þ:

We define the projection of a dataflow on a dataset, allowing to consider only a part of the aggregated datasets of the

dataflow.
Definition 5.6 (Projection of a dataflow on a dataset). Let D ¼ D1 �D2 be a dataset. Let X 2 DT be a dataflow of time scale TX .
The projection of X on Di (i ¼ 1;2) is the dataflow XDi on ðDi;TXÞ defined by:
8t 2 TX ; XDi
ðtÞ ¼ diwhereXðtÞ ¼ ðd1;d2Þ 2 D1 � D2:
We can now define the product of transfer functions.
Definition 5.7 (Product of transfer functions). Let F1 : InputT
1 ! OutputT1

1 and F2 : InputT
2 ! OutputT2

2 be two transfer
functions. The product of F1 and F2 is the function F1 � F2 : ðInput1 � Input2Þ

T ! ðOutput1 � Output2Þ
T1[T2 defined by:
8X 2 ðInput1 � Input2Þ
T
; F1 � F2ðXÞ ¼ F1ðXInput1

Þ � F2ðXInput2
Þ:
This product defines a transfer function and is associative:
Proposition 5 (Closure and associativity for the product of transfer functions). F1 � F2 is a transfer function and � on transfer
functions is associative.
Proof 7. Let D ¼ D1 � � � � � Dn be a dataset. Let X;Y 2 DT be two dataflows. Then: 8t 2 T : X�tYð Þ () 8i; XDi
�tYDi

� �
. The

proof can be easily obtained from this property. h

We finally define the product of n systems (sharing the same time scale) as the new system resulting from the aggregation
of those systems (called ‘‘subsystems’’ of the new system).37

Definition 5.8 (Product of systems). Let ðs iÞi ¼ ðTs; Inputi;Outputi; Si; q0i;F i;QiÞi be n systems of time scale Ts. The product
s1 � � � � � sn is the system Ts; Input;Output; S; q0;F ;Qð Þ where:
easy to show that the new reading and writing functions comply with the axioms of a data behavior.
Þ is considered as the blank symbol e.
ning the product of n systems (and not just 2) is to give a semantics to the notion of subsystem.
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� Input ¼ Input1 � � � � � Inputn and Output ¼ Output1 � � � � � Outputn

� S ¼ S1 � � � � � Sn and q0 ¼ ðq01; . . . ; q0nÞ
� F ðx1; . . . ; xnÞ; ðq1; . . . ; qnÞ; tð Þ ¼ F 1ðx1; q1; tÞ; . . . ;F nðx1; q1; tÞð Þ
� Q ðx1; . . . ; xnÞ; ðq1; . . . ; qnÞ; tð Þ ¼ Q1ðx1; q1; tÞ; . . . ;Qnðx1; q1; tÞð Þ

The product can be generalized to systems with different time scales with the extension.

Theorem 3 (Consistency of the product of systems). The transfer function of the product of n systems ðs iÞ is equivalent to the
product of their transfer functions:
38 Sha
extensi

Please
integr
Fs1�����sn � Fs1 � � � � � Fsn :
Proof 8. If the n systems share the same time scale, the proof is straightforward by definition of the product of systems (and
the equivalence is in fact an equality). If not: we consider the extension of the n systems to the union of their time scales. By
Theorem 2, the corresponding transfer functions are equivalent, and finally the equivalence stated in this Theorem is
straightforward. h
5.1.3. Feedback
The feedback consists in defining a new system by connecting one of the output to one of the input of an existing system,

sharing the same dataset.38 However, it is not always possible to feedback an output on an input of same dataset: to define
recursively the feedback of a system and express it as a new system with transition functions, it is necessary to establish the
non-instantaneous influence of the input on the output concerned.

We first introduce broader and natural definitions of the feedback on transfer functions as fixed point of dataflows, and
show later that it captures the feedback on systems.

Definition 5.9 (Feedback of a transfer function). Let F be a transfer function of time scale T on signature ðD� A;D� BÞ. F is
feedbackable on D if, and only if: 8X 2 AT ; 9! YX 2 DTs ; F YX � Xð ÞD ¼ YX . In this case, the feedback of F on D is the new
transfer function fbðF;DÞ of time scale Ts on signature ðA;BÞ defined by:
8X 2 AT
; fbðF;DÞðXÞ ¼ F YX � Xð ÞB:
Proposition 6 (Equivalence of feedback on a finer time scale). Let F be a transfer function and FT be an extension of F to a finer
time scale T. Then, fbðF;DÞ exists if, and only if fbðFT ;DÞ exists, and in this case we have:
fbðF;DÞ � fbðFT ;DÞ:
Proof 9. As F � FT and as the feedbacked input and output share the same data behaviors, YX for F will work for FT by con-
sidering YXð ÞT, and conversely. h

We now define the feedback of a system by induction, so that it is a constructive definition.

Definition 5.10 (Feedback of a system). Let s ¼ Ts; ðD� In; IÞ; ðD� Out;OÞ; S; q0;F ;Qð Þ be a system such that there is no
instantaneous influence of dataset D from the input to the output, i.e. 8t 2 Ts;8x 2 In; 8d 2 D; F ðd; xÞ; q; tð ÞD ¼ F ð�; xÞ; q; tð ÞD.
The feedback of D in s is the system sFBðDÞ ¼ Ts; ðIn; I0Þ; ðOut;O0Þ; S; q0;F0;Q0ð Þ with:

� I0 is the restriction of I to In, and O0 is the restriction of O to Out
� F 0ðx 2 In; q 2 S; tÞ ¼ F ðdx;q;t ; xÞ; q; t

� �
Out

� Q0ðx 2 In; q 2 S; tÞ ¼ Q ðdx;q;t; xÞ; q; t
� �

where dx;q;t stands for F ð�; xÞ; q; tð ÞD.

A good practice (well-spread in Systems Engineering) when modeling real systems is to always feedback a system with an
interface (to model properties of the link).
ring only the same e-alphabet is not enough since having different data behaviors would make different resulting feedbacked systems according to the
on considered for the initial system.
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Theorem 4 (Consistency of the feedback on systems). The transfer function of the feedback of a system (when it exists) is the
feedback of the transfer function of this system:
Please
integr
FsFBðDÞ ¼ fbðFs ;DÞ:
Proof 10. We easily show by induction that the feedbacked dataflow constructed in the definition of a feedbacked system is
a fixed point for the initial transfer function. h
5.2. Abstraction & concretization

The abstraction allows to define from a system a more abstract system, so that it can be integrated in more global ones.
Abstraction allows to consider the right systemic level to describe a system, according to modeling needs, and is thus a fun-
damental tool to deal with the complexity of systems by hiding unnecessary low-level details related to the behavior of the
system. It helps people to better understand a system and makes easier the formal analysis by working on abstraction of
systems (see [14] for abstract interpretation which is a well-known example of abstraction).

The abstraction can be understood as a zoom out from the point of view of datasets (considering higher level datas for
inputs, outputs and states, and eventually merging different dataflows), time (considering intervals of time instead of mo-
ments) and overall behavior. For instance, a computer may be considered as an electronic device with electrical signals every
microsecond. However, we generally abstract this electronic device into a more abstract device able to process complex data
as emails, with a time step being typically the hundredth of second (this simplified example will be modeled below).

The abstraction of a dataflow consists in defining a new dataflow on a more abstract dataset and on a more abstract time
scale (typically with a larger step).

Definition 5.11 (Abstraction/concretization of dataflows). An abstraction of dataflows is a surjective function A : DTc

c ! DTa

a
which is causal:
8X;Y 2 DTc

c ; 8t 2 T; X�tYð Þ ) AðXÞ�tAðYÞð Þ:
The associated concretization is the function C : DTa

a ! P DTc

c

� �
defined by CðXÞ ¼ A�1ðfXgÞ.

We remark that an abstraction/concretization of dataflows is in fact a partition of the concrete dataflows whose elements
are indexed by the abstract dataflows.

Example 13. We can take the example of a computer whose LAN connection is described by an input dataflow of bits on a
regular time scale of step 10�6 sec, i.e. Dc ¼ f0;1; �g and Tc ¼ sN with s ¼ 0:001. We can abstract this dataflow to an abstract
dataflow on Da ¼ femail; file; picture;video;html; �g on time scale Ta ¼ s0N with s0 ¼ 0:01.

The abstraction of a transfer function is a new transfer function working on abstract dataflows, with nondeterministic
behaviors modeled by events dataflows (explained below in Example 14).

Definition 5.12 (Abstraction of a transfer function). Let F : InputT ! OutputTs be a transfer function. Let Ai : InputTs ! InputTa
a

be an abstraction for input dataflows and Ao : OutputTs ! OutputTa
a an abstraction for output dataflows. The abstraction of F

for input and output abstractions ðAi;AoÞ with events E is the new transfer function
Fa : ðInputa � EÞ
T ! OutputTa

a ;
defined by:
8X 2 InputT ; 9E 2 ETa ; Fa AiðXTs
Þ � Eð Þ ¼ Ao FðXÞð Þ:
Thus, the following diagram commutes (we dismiss events here):

We now define the abstraction of a system.

Definition 5.13 (Abstraction of a system). Let s ¼ Ts; Input;Output; S; q0;F ;Qð Þ be a system. s0 ¼ Ta; Inputa � E;Outputa;ð
Sa; qa0;F a;QaÞ is an abstraction of s for input and output abstractions ðAi;AoÞ if, and only if: 9Aq : STs ! STa

a , for all execution
ðX;Q ;YÞ of s; 9E 2 ETa ; AiðXTs

Þ � E;AqðQÞ;AoðYÞ
� �

is an execution of s0.
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Conversely, s0 is a concretization of the system s .

Indeed, an abstraction consists in abstracting inputs, states and outputs dataflows in the execution of a system, and to
define on these abstract dataflow a new system that will have abstract behaviors corresponding to the initial behaviors of
the initial system. A good abstraction will be based on dataflows abstraction which will define consistent transitions in
the abstract system for states and outputs. However, nondeterministic behaviors (modeled by events dataflow E) will gen-
erally appear in the abstract system. It is a consequence of regrouping states and input/output data in more abstract �-alpha-
bets, making it impossible to express the abstract behaviors as deterministic transitions on those �-alphabets (for instance,
one abstract data may correspond to several concrete data sometimes resulting in several behaviors of the concrete system,
and the same may occur for the states). The abstraction of a deterministic system may thus result in nondeterministic behav-
iors, what does not mean that the real system modeled is nondeterministic.

Example 14 (Nondeterministic behaviors of abstraction of systems). We consider a glass whose state is described by an integer
between 0 and 100 modeling the solidity of the glass (0 means broken). This glass can receive physical forces which lower its
solidity till it is broken. At this level, the glass is described as a deterministic system. If we consider an abstraction of this
model, we may consider the glass has being broken or not (two states) and receiving a shock (i.e. a sequence of physical
forces) or nothing. When the glass, not broken yet, receives a shock, it will sometimes become broken, and sometimes
remain not broken, depending of the previously received shocks. Therefore, at this level of abstraction, the glass has
nondeterministic behaviors (since a shock may break it, with parameters that cannot be explained at this abstraction level).
Theorem 5 (Consistency of the abstraction of a system). The transfer function of the abstraction of a system is the abstraction of
the transfer function of this system.
Proof 11. The proof of this Theorem is straightforward regarding the definition of the abstraction of a system, which is
defined as abstracting the transfer function of the initial system. h
5.3. Systems integration

The integration of systems in our framework consists in composing together a finite set of systems, with product (P) and
feedback (F), then applying the abstraction (A) to describe the resulting system at a more abstract level, and repeating those
steps recursively till reaching the target overall system. We believe that the recursive integration of real systems (as done in
Systems Engineering) can be modelled consistently as the corresponding integration of systems in our framework, using only
P/F/A. We thus introduce a modeling postulate:

Postulate 1(Real integration can be modeled with P/F/A). Any real system sr resulting from the ‘‘real’’ integration of
elementary real systems ðsr

i Þ can be consistently modeled as a system s resulting from recursive applications of operators
P/F/A on the elementary systems ðs iÞ (modeling the elementary real systems ðsr

i Þ).
One can remark that we only provided operators to integrate systems together. In reality, systems design involves mixing

both bottom-up and top-down approaches. However, the same operators still hold, as the top-down approach can be inter-
pretated as finding the right subsystems that, integrated together, are equivalent to the higher level system.

6. Conclusion

We have introduced a minimalist and unified semantics for heterogeneous integrated systems. This semantics allows us
to capture two very important properties of complex systems: heterogeneity (being able to deal with various types of systems
through rich time & data) and recursive integration (taking into account the integrative dimension of complex systems that
are build recursively with multiple levels of components).

This work is the theoretical part of a broader project aiming at building an applied science for systems design, extending
the models & methods existing for software design. Within the last two years, we have applied our framework to many real
industrial cases from various industries (aeronautics, defence, banking, nuclear engineering, automotive) to assess the gen-
erality and the effectiveness of our approach. We will publish in further papers architecting methods derivated from this
theoretical work to be applied to real life situations, with associated concrete industrial experimentations.

On the semantics itself, we have identified several topics of importance for our future work:

� our semantics can be presented in a more abstract way, in the scope of category theory using a coalgebraic approach (this
work will be published very soon)
� in the present work, systems have been defined on static time scales only, regardless of events occuring during the sys-

tem’s life. It might be meaningful to extend this definition of systems to dynamic time scales constructed during the exe-
cution of the system
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� the most complicated integration operator, i.e. abstraction, should be refined by different operators performing special-
ized kind of abstractions on systems, consistently with the reality of the specialized and meaningful abstractions encoun-
tered in Systems Engineering. Another associated improvement to our model would be to define a nondeterministic
model of systems, which is necessary to define more specific abstraction operators
� finally, these models are intended to help designing systems. Therefore, we are willing to provide a formal framework to

describe a design process using our semantics, providing a formalization of design approaches mixing top-down and bot-
tom-up approaches to explore the recursive structure of integrated systems being designed.
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